top of page
IMG_5100.JPG

FISHERY RELATED PUBLICATIONS

2019

Jokinen et al. 2019. From ecology to genetics and back: the tale of two flounder species in the Baltic Sea. ICES Journal of Marine Sciences 76:2267-2275.

Momigliano et al. 2019. Cryptic temporal changes in stock composition explain the decline of a flounder (Platichthys spp.) assemblage. Evolutionary Applications 12:549-559.

2018

Momigliano et al. 2018. Platichthys solemdali sp. Nov (Actinopterygii, Pleuronectiformes): A new flounder species from the Baltic Sea. Frontiers in Marine Science 5: 225

2016

Guo et al. 2016. Population genomic evidence for adaptive differentiation in Baltic Sea herring. Molecular Ecology 25:2833-2852

2015

Budria et al. 2015. Comparison of catch per unit effort among four minnow trap models in the three-spined stickleback (Gasterosteus aculeatus) fishery. Scientific Reports 5:18548

Merilä. 2015. Baiting improves CPUE in nine-spined stickleback (Pungitius pungitius) minnow trap fishery. Ecology & Evolution 17:3737-3742.

Merilä. 2015. Factors influencing three-spined stickleback Gasterosteus aculeatus (Linneaus 1758) catch per unit effort. Journal of Applied Ichtyology 31:905-908

2013

Wennerström et al. 2013. Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity & Conservation22: 3045-3065

Merilä et al. 2013. Large differences in catch per unit of effort between two minnow trap types. BMC Research Notes 6:151.

Corander et al. 2013. High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Molecular Ecology 22: 2931-2940

2012

Teacher et al. 2012. Oceanographic connectivity and environmental variation influence the genetic structure of Baltic Sea herring. Evolutionary Applications 6: 549-567

McCairns et al. 2012. Effective size and genetic composition of two exploited, migratory whitefish (Coregonus lavaretus lavaretus) populations. Conservation Genetics 13: 1509-1520

Merilä. 2012. Factors influencing ninespine stickleback (Pungitus pungitus) trapping success. Annales Zoologici Fennici 49:350-354.

2009

Kuparinen & Merilä. 2009. Timing of river entry in the Atlantic salmon (Salmo salar L.). Current Zoology 55: 342 – 349.

Kuparinen et al. 2009. Lunar periodicity and the timing of river entry in Atlantic salmon (Salmo salar L.). Journal of Fish Biology 10:2401-2408

Kuparinen et al. 2009. Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evolutionary Applications 2:  234 – 243

Kuparinen et al. 2009. Growth history perspective on the decreasing age and size at maturation in Atlantic salmon. Marine Ecology Progress Series 376:245-252

2008

Kuparinen & Merilä. 2008. The role of fisheries-induced evolution. Science 320:47-48

Kuparinen et al. 2008. Probabilistic reaction norms for continuous ontogenetic transition processes. PLoS One 3(11): e3677. doi:10.1371/ journal.pone.0003677

Cano et al. 2008. Genetic differentiation, effective population size and gene flow in marine fishes: implications for stock management. Journal of Integrative Field Sciences 5: 1-10.

Ortega-Garcia et al. 2008. The relative importance of lunar phase and environmental conditions on Striped Marlin (Tetrapturus audax) catches in sport fishing. Fisheries Research 93: 190-194.

2007

Kuparinen et al. 2007. Role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries 9: 201-20

Kuparinen & Merilä. 2007. Detecting and managing fisheries induced evolution. Trends in Ecology & Evolution 22: 652-659.

2003

Primmer et al. 2003. Prediction of offspring fitness based on parental genetic diversity in endangered salmonid populations. Journal of Fish Biology 63:1-19

bottom of page